设分别为椭圆:的左右顶点,为右焦点,为在点处的切线,为上异于的一点,直线交于,为中点,有如下结论:①平分;②与椭圆相切;③平分;④使得的点不存在.其中正确结论的序号是_____________.
在正方体中,是的中点,且,函数,的图象为曲线,若曲线存在与直线垂直的切线(为自然对数的底数),则实数的取值范围是____________.
已知曲线与轴交点为,分别由两点向直线作垂线,垂足为,沿直线将平面折起,使平面,则四面体的外接球的表面积为____________.
平面向量满足,且,则在方向上的投影为____________.
已知为奇函数,且当,则____________.
设函数,曲线在点处的切线方程为,则曲线在点处切线方程是______