一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,,,,由此得到样本的重量频率分布直方图,如图(1)求的值;(2)根据样本数据,试估计盒子中小球重量的平均值;(注:设样本数据第组的频率为,第组区间的中点值为,则样本数据的平均值为.)(3)从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望.
如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形.由对称性,图中8个三角形都是全等的三角形,设. (1)试用表示的面积; (2)求八角形所覆盖面积的最大值,并指出此时的大小.
已知,其中是常数. (1)若是奇函数,求的值; (2)求证:的图像上不存在两点A、B,使得直线AB平行于轴.
在直三棱柱中,,,求: (1)异面直线与所成角的大小; (2)直线到平面的距离.
已知函数在处存在极值. (1)求实数的值; (2)函数的图像上存在两点A,B使得是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在轴上,求实数的取值范围; (3)当时,讨论关于的方程的实根个数.
已知椭圆的右焦点为F2(1,0),点在椭圆上. (1)求椭圆方程; (2)点在圆上,M在第一象限,过M作圆的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由.