已知椭圆的中心在原点,焦点在轴上,长轴长为,且点在椭圆上.(1)求椭圆的方程;(2)设是椭圆长轴上的一个动点,过作方向向量的直线交椭圆于、两点,求证:为定值.
已知函数.(1)若,求曲线在点处的切线方程;(2)求函数的单调区间;(3)设函数.若至少存在一个,使得成立,求实数的取值范围.
已知,,.(1)当时,试比较与的大小关系;(2)猜想与的大小关系,并给出证明.
已知在的展开式中,第5项的系数与第3项的系数之比是.(1)求展开式中的所有有理项;(2)求展开式中系数绝对值最大的项;(3)求的值.
由数字1、2、3、4、5、6组成无重复数字的数中,求:(1)六位偶数的个数;(2)求三个偶数互不相邻的六位数的个数;(3)求恰有两个偶数相邻的六位数的个数;(4)奇数字从左到右,从小到大依次排列的六位数的个数.
已知复数,(,是虚数单位).(1)若复数在复平面上对应点落在第一象限,求实数的取值范围;(2)若虚数是实系数一元二次方程的根,求实数值.