已知函数,其中N*,aR,e是自然对数的底数.(1)求函数的零点;(2)若对任意N*,均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围;(3)已知k,mN*,k<m,且函数在R上是单调函数,探究函数的单调性.
如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点. (1)求证:BF∥平面A′DE; (2)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值.
如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1. (1)求证:AF∥平面BDE; (2)求证:CF⊥平面BDE.
如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD. (1)求证:BE=DE; (2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.
如图,直三棱柱ABCA′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为 A′B和B′C′的中点. (1)证明:MN∥平面A′ACC′; (2)求三棱锥A′MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)
如图,在四棱锥PABCD中,底面是边长为2的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2,M、N分别为PB、PD的中点. (1)证明:MN∥平面ABCD; (2)过点A作AQ⊥PC,垂足为点Q,求二面角AMNQ的平面角的余弦值.