如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.
用辗转相除法求5280与12155的最大公约数。
如图,在长方体中,是棱的中点,点在棱上,且(为实数). (1)当时,求直线与平面所成角的正弦值的大小; (2)试问:直线与直线能否垂直?请说明理由.
抛掷A,B,C三枚质地不均匀的纪念币,它们正面向上的概率如下表所示;
将这三枚纪念币同时抛掷一次,设表示出现正面向上的纪念币的个数. (1)求的分布列及数学期望; (2)在概率中,若的值最大,求a的最大值
已知曲线:,直线:(为参数). (1)写出曲线的参数方程,直线的普通方程; (2)过曲线上任一点作与夹角为的直线,交于点,求的最大值与最小值.
两条曲线的极坐标方程分别为,它们相交于A,B两点,求线段AB的长.