设f(x)=asinx+bcos2x,其中a,b∈R,ab≠0.若f(x)≤对一切x∈R恒成立,则①f=0;②︱f︱<︱f︱; ③f(x)既不是奇函数也不是偶函数;④f(x)的单调递增区间是[kπ+,kπ+](k∈Z);⑤存在经过点(a,b)的直线与函数f(x)的图象不相交.以上结论正确的是 (写出所有正确结论的编号).
要使式子在实数范围内有意义,则的取值范围是 .
若,对任意自然数n都成立,则 , ;计算: .
如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为 .
方程的解是 .
函数的自变量x的取值范围是 .