已知函数f(x)=ax3+bx2-3x(a、b∈R)在点x=-1处取得极大值为2.(1)求函数f(x)的解析式;(2)若对于区间[-2,2]上任意两个自变量的值x1、x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.
已知二次函数有两个零点和,且最小值是,函数与的图象关于原点对称. (1)求和的解析式; (2)若在区间[-1,1]上是增函数,求实数的取值范围.
如图,中,两点分别是线段的中点,现将沿折成直二面角. (1) 求证:; (2) 求直线与平面所成角的正切值.
已知函数. (1)求的值域和最小正周期; (2)若对任意,使得恒成立,求实数的取值范围.
已知椭圆的长轴长是短轴长的两倍,焦距为. (Ⅰ)求椭圆的标准方程; (Ⅱ)设不过原点的直线与椭圆交于两点、,且直线、、的斜率依次成等比数列,求△面积的取值范围.
已知. (Ⅰ)求的最小值; (Ⅱ)若存在,使不等式成立,求的取值范围.