若对于定义在R上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数都成立,则称f(x)是一个“λ伴随函数”.下列关于“λ伴随函数”的结论:①f(x)=0不是常数函数中唯一一个“λ伴随函数”;②f(x)=x不是“λ伴随函数”;③f(x)=x2是“λ伴随函数”;④“伴随函数”至少有一个零点.其中正确的结论个数是( )
若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表: 那么方程x3+x2-2x-2=0的一个近似根(精确到0.1)为()
对任意实数, 若不等式恒成立, 则实数的取值范围是 ( )
若函数(),则函数在其定义域上是
集合M={x|}, N={}, 则 MN = ( )
( )