在数列中,(1)证明是等比数列,并求的通项公式;(2)求的前n项和
如图,在四棱锥中,,,,∥,. (Ⅰ)求证:; (Ⅱ)求多面体的体积.
在等差数列中,,、、成等比数列,求数列的前n项和.
已知函数. (Ⅰ)求的最小正周期; (Ⅱ)求在区间上的最大值和最小值.
((本小题满分12分) 设函数. (Ⅰ)当时,过原点的直线与函数的图象相切于点P,求点P的坐标; (Ⅱ)当时,求函数的单调区间; (Ⅲ)当时,设函数,若对于],[0,1] 使≥成立,求实数b的取值范围.(是自然对数的底,)
(.(本小题满分12分) 如图,焦距为2的椭圆E的两个顶点分别为和,且与共线. (Ⅰ)求椭圆E的标准方程; (Ⅱ)若直线与椭圆E有两个不同的交点P和Q,且原点O总在以PQ为直径的圆的内部,求实数m的取值范围.