设f(x)=+xln x,g(x)=x3-x2-3.(1)如果存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;(2)如果对于任意的s,t∈,都有f(s)≥g(t)成立,求实数a的取值范围.
(本大题15分)已知函数.(1)若,求的值域;(2)在中,角所对的边分别是,若,且,求边的长.
(本小题满分14分)已知函数为奇函数.(Ⅰ)若,求函数的解析式;(Ⅱ)当时,不等式在上恒成立,求实数的最小值;(Ⅲ)当时,求证:函数在上至多一个零点.
(本小题满分15分)已知函数的图象过点,且点在函数的图象上.(Ⅰ)求数列的通项公式;(Ⅱ)令,若数列的前项和为,求证:.
(本小题满分15分)如图,四棱锥的底面是正方形,侧棱⊥底面,,是的中点.(Ⅰ)证明://平面; (Ⅱ)求二面角的平面角的余弦值;(Ⅲ)在棱上是否存在点,使⊥平面?证明你的结论.
(本题满分15分)已知向量,,.(Ⅰ)求函数的单调递减区间及其图象的对称轴方程;(Ⅱ)当时,若,求的值.