四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且=2.347x-6.423;②y与x负相关且=-3.476x+5.648;③y与x正相关且=5.437x+8.493;④y与x正相关且=-4.326x-4.578.其中一定不正确的结论的序号是( ).
已知曲线 C : m x 2 + n y 2 = 1 .( )
若m>n>0,则C是椭圆,其焦点在y轴上
若m=n>0,则C是圆,其半径为 n
若mn<0,则C是双曲线,其渐近线方程为 y = ± - m n x
若m=0,n>0,则C是两条直线
若定义在 R 的奇函数 f( x)在 ( - ∞ , 0 ) 单调递减,且 f(2)=0,则满足 xf ( x - 1 ) ≥ 0 的 x的取值范围是( )
[ - 1 , 1 ] ∪ [ 3 , + ∞ )
[ - 3 , - 1 ] ∪ [ 0 , 1 ]
[ - 1 , 0 ] ∪ [ 1 , + ∞ )
[ - 1 , 0 ] ∪ [ 1 , 3 ]
已知 P是边长为2的正六边形 ABCDEF内的一点,则 AP ⃗ ⋅ AB ⃗ 的取值范用是( )
( - 2 , 6 )
( - 6 , 2 )
( - 2 , 4 )
基本再生数 R 0与世代间隔 T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型: I ( t ) = e rt 描述累计感染病例数 I( t)随时间 t(单位:天)的变化规律,指数增长率 r与 R 0, T近似满足 R 0=1+ rT.有学者基于已有数据估计出 R 0=3.28, T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )
1.2天
1.8天
2.5天
3.5天
某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
62%
56%
46%
42%