在△中,所对边分别为、、.若,则 .
有一密码把英文的明文(真实文)按字母分解,其中a,b,…,z的26个字母(不论大小写)分别对应着1,2,…,26个自然数,见下表:
(x是奇数)(x是偶数)给出如下一个变换公式:,如,即h变成q.按上述规定,若将明文译成密文是shxc,那么原来的明文是 .
为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则如图所示,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文9,10,22,24时,则解密得到的明文为 .
为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则如图所示,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为 .
为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密原理如下:已知加密为y=ax﹣2(x为明文、y为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是 .
为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下:明文密文密文明文现在加密密钥为y=loga(x+2),如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.问:若接受方接到密文为“4”,则解密后得到明文为( )