如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°. (1)求证:AC⊥平面BDE;(2)求二面角F-BE-D的余弦值;(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
(本小题满分12分)如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2. (I)证明:AB1⊥BC1; (II)求点B到平面AB1C1的距离; (III)求二面角C1—AB1—A1的大小.
(本小题满分10分)已知函数 (1)求函数的最小正周期及当为何值时有最大值; (2)令,判断函数的奇偶性,并说明理由.
(本小题满分12分) 设、分别是椭圆的左、右焦点. (1)若是该椭圆上的一个动点,求的取值范围; (2)设过定点Q(0,2)的直线与椭圆交于不同的两点M、N,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围. (3)设是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.求四边形面积的最大值.
(本小题满分12分) 已知函数 (1)求函数的极大值; (2)当时,求函数的值域; (3)已知,当时,恒成立,求的取值范围。
(本小题满分12分) 某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从种服装商品, 种家电商品, 种日用商品中,选出种商品进行促销活动. (Ⅰ)试求选出的种商品中至多有一种是家电商品的概率; (Ⅱ)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高元,同时,若顾客购买该商品,则允许有次抽奖的机会,若中奖,则每次中奖都获得数额为元的奖券.假设顾客每次抽奖时获奖的概率都是,若使促销方案对商场有利,则最少为多少元?