若函数f(x)对任意的实数x1,x2∈D,均有|f(x2)-f(x1)|≤|x2-x1|,则称函数f(x)是区间D上的“平缓函数”.(1)判断g(x)=sin x和h(x)=x2-x是不是实数集R上的“平缓函数”,并说明理由;(2)若数列{xn}对所有的正整数n都有|xn+1-xn|≤,设yn=sin xn,求证:|yn+1-y1|<.
设函数 (1)当时,求曲线在点处的切线方程; (2)若函数在其定义域内为增函数,求实数的取值范围; (3)设函数,若在上至少存在一点使成立,求实数的取值范围.
设 (1)若在上递增,求的取值范围; (2)求在上的最小值.
已知 (1)求的值; (2)求函数的值.
已知函数在轴右侧的第一个最高点的横坐标为. (Ⅰ)求的值; (Ⅱ)若将函数的图象向右平移个单位后,再将得到的图象上各点横坐标伸长到原来的倍,纵坐标不变,得到函数的图象,求函数的最大值及单调递减区间.
设全集,函数的定义域为A,集合,若恰好有2个元素,求a的取值集合.