首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 较难
  • 浏览 136

若函数f(x)对任意的实数x1x2D,均有|f(x2)-f(x1)|≤|x2x1|,则称函数f(x)是区间D上的“平缓函数”.
(1)判断g(x)=sin xh(x)=x2x是不是实数集R上的“平缓函数”,并说明理由;
(2)若数列{xn}对所有的正整数n都有|xn+1xn|≤,设yn=sin xn,求证:|yn+1y1|<.

登录免费查看答案和解析

若函数f(x)对任意的实数x1,x2∈D,均有|f(x2)-