已知是正数,,,.(Ⅰ)若成等差数列,比较与的大小;(Ⅱ)若,则三个数中,哪个数最大,请说明理由;(Ⅲ)若,,(),且,,的整数部分分别是求所有的值.
(本小题满分12分)如图,四边形是正方形,△与△均是以为直角顶点的等腰直角三角形,点是的中点,点是边上的任意一点.(1)求证:;(2)求二面角的平面角的正弦值.
已知向量,,函数(1)求函数的最小正周期和单调递减区间;(2)在中,分别是角的对边,且,,,且,求的值.
选修4—5: 不等式选讲.(Ⅰ)设函数.证明:;(Ⅱ)若实数满足,求证:
已知曲线的极坐标方程是,直线的参数方程是(为参数).(Ⅰ)将曲线的极坐标方程化为直角坐标方程;(Ⅱ)设直线与轴的交点是,是曲线上一动点,求的最大值.
选修:几何证明选讲如图所示,是圆的切线,为切点,是圆的割线,的平分线与,分别交于点,且.(Ⅰ)求证:;(Ⅱ)求的大小.