抛物线有光学性质:由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出。现已知抛物线的焦点为F,过抛物线上点的切线为,过P点作平行于x轴的直线m,过焦点F作平行于的直线交m于M,则的长为( )
给出下面类比推理命题(其中R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈C,则复数a+bi=c+di⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”;④“若a,b∈R,则a·b=0⇒a=0或b=0”.类比推出“若a,b∈C,则a·b=0⇒a=0或b=0”.其中类比结论正确的个数是( )
设f0(x)=cos x,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N*,则f2011(x)=( )
凸n边形有f(n)条对角线,则凸n+1边形有f(n+1)条对角线数为( )
在古希腊毕达哥拉斯学派把1,3,6,10,15,21,28,……这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形(如下图所示)则第n个三角形数为( )
在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有( )