已知函数f(x)=在x=0,x=处存在极值。(Ⅰ)求实数a,b的值;(Ⅱ)函数y=f(x)的图象上存在两点A,B使得△AOB是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,求实数c的取值范围;(Ⅲ)当c=e时,讨论关于x的方程f(x)=kx(k∈R)的实根个数。
如图,在侧棱垂直底面的四棱柱 A B C D - A 1 B 1 C 1 D 1 中, A D ∥ B C , A D ⊥ A B , A B = 2 , A D = 2 , B C = 4 , A A 1 = 2 , E 是 D D 1 的中点, F 是平面 B 1 C 1 E 与直线 A A 1 的交点.
(1)证明:
(i) E F ∥ A 1 D 1 ; (ii) B A 1 ⊥ 平面 B 1 C 1 E F ; (2)求 B C 1 与平面 B 1 C 1 E F 所成的角的正弦值.
已知数列 { a n } 的前 n 项和为 S n ,且 S n = 2 n 2 + n , n ∈ N + ,数列 { b n } 满足 a n = 4 log 2 b n + 3 , n ∈ N . (1)求 a n , b n ; (2)求数列 { a n · b n } 的前 n 项和 T n .
在 ∆ A B C 中,内角 A , B , C 的对边分别为 a , b , c ,且 b sin A = 3 a cos B 。 (1)求角 B 的大小; (2)若 b = 3 , sin C = 2 sin A ,求 a , c 的值
定义:曲线 C 上的点到直线l的距离的最小值称为曲线 C 到直线l的距离,已知曲线 C 1 : y = x 2 + a 到直线 l : y = x 的距离等于曲线 C 2 : x 2 + ( y + 4 ) 2 = 2 到直线 l : y = x 的距离,则实数 a =
已知函数 f ( x ) = x - ln ( x + a ) 的最小值为0,其中 a > 0
(Ⅰ)求 a 的值; (Ⅱ)若对任意的 x ∈ [ 0 , + ∞ ) 有 f ( x ) ≤ k x 2 成立,求实数 k 的最小值; (Ⅲ)证明 ∑ i = 1 n 2 2 i - 1 - ln ( 2 n + 1 ) < 2 , ( n ∈ N * ) .