如图,在直角坐标系中,射线OA: x-y=0(x≥0),OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.(1)当AB中点为P时,求直线AB的斜率(2)当AB中点在直线上时,求直线AB的方程.
已知半径为的圆的圆心M在轴上,圆心M的横坐标是整数,且圆M与直线相切. 求:(Ⅰ)求圆M的方程; (Ⅱ)设直线与圆M相交于两点,求实数的取值范围.
(本小题满分14分)已知:定义在R上的函数,对于任意实数a, b都满足,且,当. (Ⅰ)求的值; (Ⅱ)证明在上是增函数; (Ⅲ)求不等式的解集.
(本小题满分14分)已知是定义在R上的奇函数,且当时,. (Ⅰ)求的解析式; (Ⅱ)问是否存在这样的正数a, b使得当时,函数的值域为,若存在,求出所有a, b的值,若不存在,说明理由.
已知函数(a为常数)是奇函数. (Ⅰ)求a的值与函数的定义域; (Ⅱ)若当时,恒成立.求实数的取值范围.
(本小题满分14分)已知集合. (Ⅰ)若; (Ⅱ)若,求实数a.