如图,在直角坐标系中,射线OA: x-y=0(x≥0),OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.(1)当AB中点为P时,求直线AB的斜率(2)当AB中点在直线上时,求直线AB的方程.
用分析法证明:当x>1时,x>ln(1+x).
用分析法证明:当x>0时,sinx<x.
已知函数f(x)=x2+ax+b,当p,q满足p+q=1时,证明:pf(x)+qf(y)≥f(px+qy)对于任意实数x,y都成立的充要条件是0≤p≤1.
若a,b,m,n都为正实数,且m+n=1. 求证:≥m+n.
已知a>0,b>0,求证:+≥+.