一中食堂有一个面食窗口,假设学生买饭所需的时间互相独立,且都是整数分钟,对以往学生买饭所需的时间统计结果如下:
从第一个学生开始买饭时计时.(Ⅰ)求第2分钟末没有人买晚饭的概率;(Ⅱ)估计第三个学生恰好等待4分钟开始买饭的概率.
已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为。 (Ⅰ)求椭圆的方程; (Ⅱ)已知动直线与椭圆相交于、两点。 ①若线段中点的横坐标为,求斜率的值; ②已知点,求证:为定值
若是函数的两个极值点。 (Ⅰ)若,求函数的解析式; (Ⅱ)若,求的最大值。
如图,已知直四棱柱的底面是直角梯形,,,,分别是棱,上的动点,且,,. (Ⅰ)证明:无论点怎样运动,四边形都为矩形; (Ⅱ)当时,求几何体的体积。
已知数列是各项均为正数的等比数列,且,。 (I)求数列的通项公式;(II)设求数列的前n项和Sn。
已知关于的一元二次函数 (Ⅰ)设集合和,分别从集合和中随机取一个数作为和,求函数在区间[上是增函数的概率; (Ⅱ)设点是区域内的随机点,记有两个零点,其中一个大于,另一个小于,求事件发生的概率