设命题;命题:不等式对任意恒成立.若为真,且或为真,求的取值范围.
已知函数 (1)讨论函数f (x)的极值情况; (2)设g (x) =" ln(x" + 1),当x1>x2>0时,试比较f (x1 – x2)与g (x1 – x2)及g (x1) –g (x2)三者的大小;并说明理由.
如图所示,在直三棱柱中,,,,,点是棱的中点. (Ⅰ)证明:平面AA1C1C平面; (Ⅱ)求二面角的余弦值.
设,函数 (Ⅰ)若是函数的极值点,求实数的值; (Ⅱ)若函数在上是单调减函数,求实数的取值范围.
已知为空间的一个基底,且, ,, (1)判断四点是否共面; (2)能否以作为空间的一个基底?若不能,说明理由;若能,试以这一基底表示向量
设,且曲线y=f(x)在x=1处的切线与x轴平行。 (Ⅰ)求的值,并讨论的单调性; (Ⅱ)证明:当