已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数).(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;(Ⅱ)设曲线经过伸缩变换得到曲线,设为曲线上任一点,求的最小值,并求相应点的坐标.
已知等比数列的首项,公比,数列前项的积记为. (1)求使得取得最大值时的值; (2)证明中的任意相邻三项按从小到大排列,总可以使其成等差数列,如果所有这些等差数列的公差按从小到大的顺序依次设为,证明:数列为等比数列. (参考数据)
如图是三棱柱的三视图,正(主)视图和俯视图都是矩形,侧(左)视图为等边三角形,为的中点. (1)求证:∥平面; (2)设垂直于,且,求点到平面的距离.
已知正方形的边长为2,分别是边的中点. (1)在正方形内部随机取一点,求满足的概率; (2)从这八个点中,随机选取两个点,记这两个点之间的距离的平方为,求.
已知函数. (1)求的最小正周期和单调增区间; (2)设,若求的大小.
已知公差大于零的等差数列的前n项和为,且满足:,. (1)求数列的通项公式; (2)若数列是等差数列,且,求非零常数c; (3)在(2)的条件下,设,已知数列为递增数列,求实数的取值范围.