(如图1)在平面四边形中,为中点,,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.(1)求三棱锥的体积;(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.
某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图: (Ⅰ)补全频率分布直方图并求、、的值; (Ⅱ)从岁年龄段的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,记选取的名领队中年龄在岁的人数为,求的分布列和期望。
已知向量(>0),函数的最小正周期为。 (I)求函数的单调增区间;(II)如果△ABC的三边a、b、c所对的角分别为A、B、C,且满足求的值。
已知函数, (1)设常数,若在区间上是增函数,求的取值范围; (2)设集合,,若,求的取值范围
已知函数, (1)当时,求函数的最小值. (2)对于任意,不等式都成立,求实数的范围.
已知函数,其图象过点. (1)求的值; (2)将函数的图象上各点的横坐标缩短为原来的,纵坐标不变,得到函数的图象,求函数在区间上的最大值和最小值.