已知函数f(x)=cos 2x+2sin x·sin.(1)求f(x)的最小正周期,最大值以及取得最大值时x的集合;(2)若A是锐角三角形△ABC的内角,f(A)=0,b=5,a=7,求△ABC的面积.
自点A(-3,3)发出的光线l射到x轴上,被x轴反射,反射光线所在的直线与圆C:x2+y2-4x-4y+7=0相切.求:(1)光线l和反射光线所在的直线方程;(2)光线自A到切点所经过的路程.
求半径为4,与圆x2+y2-4x-2y-4=0相切,且和直线y=0相切的圆的方程.
已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).(1)若l1与圆相切,求l1的方程;(2)若l1与圆相交于P、Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM·AN是否为定值?若是,则求出定值;若不是,请说明理由.
已知圆C:x2+(y-3)2=4,一动直线l过A(-1,0)与圆C相交于P、Q两点,M是PQ中点,l与直线m:x+3y+6=0相交于N.(1)求证:当l与m垂直时,l必过圆心C;(2)当PQ=2时,求直线l的方程;(3)探索·是否与直线l的倾斜角有关?若无关,请求出其值;若有关,请说明理由.
已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.(1)求与圆C相切,且与直线l垂直的直线方程;(2)在直线OA上(O为坐标原点),存在定点B(不同于点A),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点B的坐标.