设函数,,其中实数.(1)若,求函数的单调区间;(2)当函数与的图象只有一个公共点且存在最小值时,记的最小值为,求的值域;(3)若与在区间内均为增函数,求实数的取值范围.
(本小题满分12分)已知函数,. (Ⅰ)时,证明:; (Ⅱ),若,求a的取值范围.
(本小题满分12分)已知圆,点,以线段AB为直径的圆内切于圆,记点B的轨迹为. (Ⅰ)求曲线的方程; (Ⅱ)直线AB交圆于C,D两点,当B为CD中点时,求直线AB的方程.
(本小题满分12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,.(Ⅰ)求证:;(Ⅱ)若,求二面角的余弦值.
(本小题满分12分)小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.(Ⅰ)若小王发放5元的红包2个,求甲恰得1个的概率;(Ⅱ)若小王发放3个红包,其中5元的2个,10元的1个.记乙所得红包的总钱数为X,求X的分布列和期望.
(本小题满分12分)设数列的前n项和为,满足,且.(Ⅰ)求的通项公式;(Ⅱ)若成等差数列,求证:成等差数列.