已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦眯分别为F1,F2,且|F1F2|=2,点P(1,)在椭圆C上.(I)求椭圆C的方程;(II)过F1的直线l与椭圆C相交于A,B两点,且的面积为,求直线l的方程.
设函数. (1)对于任意实数,恒成立,求的最大值; (2)若方程有且仅有一个实根,求的取值范围。
如图,在直三棱柱ABC—A1B1C1中,,,直线B1C与平面ABC成30°角。
(1)求证:平面B1AC⊥平面ABB1A1;
己知点P在抛物线上运动,Q点的坐标是(-1,2),O是坐标原点,四边形OPQR是平行四边形(O、P、Q、R顺序按逆时针),求R点的轨迹方程。
已知p: |1-|≤2,q::x2-2x+1-m2≤0(m>0),若是的必要而不充分条件,求实数m的取值范围.
已知函数,. (I)讨论的单调性. (II)当时,讨论关于的方程的实根的个数.