某工厂有名工人,现接受了生产台型高科技产品的总任务.已知每台型产品由个型装置和个型装置配套组成,每个工人每小时能加工个型装置或个型装置.现将工人分成两组同时开始加工,每组分别加工一种装置(完成自己的任务后不再支援另一组).设加工型装置的工人有人,他们加工完型装置所需时间为,其余工人加工完型装置所需时间为(单位:小时,可不为整数).(1)写出、的解析式;(2)写出这名工人完成总任务的时间的解析式;(3)应怎样分组,才能使完成总任务用的时间最少?
某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:假设甲、乙两种酸奶独立销售且日销售量相互独立.(Ⅰ)写出频率分布直方图(甲)中的a的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,,试比较与的大小;(只需写出结论)(Ⅱ)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;(Ⅲ)记X表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求X的数学期望.
在中,角的对边分别为,向量,向量,且:(Ⅰ)求角的大小;(Ⅱ)设BC中点为D,且:求a+2c的最大值及此时的面积.
在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF=1.(1)求证:BD⊥平面AED;(2)求B到平面FDC的距离.
如图,已知四棱锥,底面为菱形,平面,,分别是的中点.(1)证明:;(2)若,求二面角的余弦值.
解答下列问题:(1)求平行于直线3x+4y2=0,且与它的距离是1的直线方程;(2)求垂直于直线x+3y5=0,且与点P(1,0)的距离是的直线方程.