某工厂有名工人,现接受了生产台型高科技产品的总任务.已知每台型产品由个型装置和个型装置配套组成,每个工人每小时能加工个型装置或个型装置.现将工人分成两组同时开始加工,每组分别加工一种装置(完成自己的任务后不再支援另一组).设加工型装置的工人有人,他们加工完型装置所需时间为,其余工人加工完型装置所需时间为(单位:小时,可不为整数).(1)写出、的解析式;(2)写出这名工人完成总任务的时间的解析式;(3)应怎样分组,才能使完成总任务用的时间最少?
某产品按行业生产标准分成个等级,等级系数依次为,其中为标准,为标准,产品的等级系数越大表明产品的质量越好. 已知某厂执行标准生产该产品,且该厂的产品都符合相应的执行标准.从该厂生产的产品中随机抽取件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7 该行业规定产品的等级系数的为一等品,等级系数的为二等品,等级系数的为三等品. (1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率; (2)从样本的一等品中随机抽取2件,求所抽得2件产品等级系数都是8的概率
如图,在正四棱柱中,,,为的中点,. (Ⅰ) 证明:∥平面; (Ⅱ)证明:平面.
已知函数. (1)求函数的最小正周期和值域; (2)若为第二象限角,且,求的值.
已知函数 (Ⅰ)若函数在[1,2]上是减函数,求实数a的取值范围; (Ⅱ)令是否存在实数a,当(e是自然常数)时,函数的最小值是3,若存在,求出a的值;若不存在,说明理由; (Ⅲ)当时,证明:
设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且. (Ⅰ)求椭圆的离心率; (Ⅱ)D是过三点的圆上的点,D到直线的最大距离等于椭圆长轴的长,求椭圆的方程; (Ⅲ)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由.