已知函数,.(Ⅰ)求函数的最小值和最小正周期;(Ⅱ)设的内角、、的对边分别为、、,满足,且,求、的值.
已知四面体S-ABC中,SA⊥底面ABC,△ABC是锐角三角形,H是点A在面SBC上的射影.求证:H不可能是△SBC的垂心.
已知各棱长均为a的正四面体ABCD,E是AD边的中点,连结CE.求CE与底面BCD所成角的正弦值.
已知异面直线l1和l2,l1⊥l2,MN是l1和l2的公垂线,MN = 4,A∈l1,B∈l2,AM = BN = 2,O是MN中点.①求l1与OB的成角.②求A点到OB距离.
已知a、b、c是平面α内相交于一点O的三条直线,而直线l和α相交,并且和a、b、c三条直线成等角. 求证:l⊥α
如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。