设.(Ⅰ)若,讨论的单调性;(Ⅱ)时,有极值,证明:当时,
已知是实数,试解关于的不等式:
已知.(Ⅰ)解不等式; (Ⅱ)对于任意的,不等式恒成立,求的取值范围.
设圆的极坐标方程为,以极点为直角坐标系的原点,极轴为轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆上的一点作平行于轴的直线,设与轴交于点,向量.(Ⅰ)求动点的轨迹方程;(Ⅱ)设点 ,求的最小值.
如图△为直角三角形,,以为直径的圆交于点,点是边的中点,连交圆于点.(Ⅰ)求证:、、、四点共圆;(Ⅱ)设,,求的长.
已知函数 且.(Ⅰ)当时,求在点处的切线方程; (Ⅱ)若函数在区间上为单调函数,求的取值范围.