已知椭圆 C : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 )的两个焦点分别为 F 1 ( - 1 , 0 ) , F 2 ( 1 , 0 ) ,且椭圆 C 经过点 P ( 4 3 , 1 3 ) . (I)求椭圆 C 的离心率: (II)设过点 A ( 0 , 2 ) 的直线 l 与椭圆 C 交于 M , N 两点,点 Q 是线段 M N 上的点,且 2 | A Q | 2 = 1 | A M | 2 + 1 | A N | 2 ,求点 Q 的轨迹方程.
已知为定义在上的奇函数,当时,;(1)求在上的解析式;(2)试判断函数在区间上的单调性,并给出证明.
函数,(1)若的定义域为R,求实数的取值范围.(2)若的定义域为[-2,1],求实数的值
已知函数 (1)若函数在的单调递减区间(—∞,2],求函数在区间[3,5]上的最大值. (2)若函数在在单区间(—∞,2]上是单调递减,求函数的最大值.
判断并利用定义证明f(x)=在(-∞,0)上的增减性.
设函数,(1)若函数在处与直线相切;①求实数的值;②求函数上的最大值;(2)当时,若不等式对所有的都成立,求实数的取值范围.