已知椭圆 C : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 )的两个焦点分别为 F 1 ( - 1 , 0 ) , F 2 ( 1 , 0 ) ,且椭圆 C 经过点 P ( 4 3 , 1 3 ) . (I)求椭圆 C 的离心率: (II)设过点 A ( 0 , 2 ) 的直线 l 与椭圆 C 交于 M , N 两点,点 Q 是线段 M N 上的点,且 2 | A Q | 2 = 1 | A M | 2 + 1 | A N | 2 ,求点 Q 的轨迹方程.
已知函数在轴上的截距为1,且曲线上一点处的切线斜率为.(1)曲线在P点处的切线方程;(2)求函数的极大值和极小值
(本题14分) 已知函数R). (1)若曲线在点处的切线与直线平行,求的值; (2)在(1)条件下,求函数的单调区间和极值; (3)当,且时,证明:
(本题13分) 已知数列和满足:,, 其中为实数,为正整数. (Ⅰ)对任意实数,证明数列不是等比数列; (Ⅱ)试判断数列是否为等比数列,并证明你的结论;
(本题12分) 某民营企业生产A、B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图一所示;B产品的利润与投资的算术平方根成正比,其关系如图二所示(利润与投资单位:万元). (1)分别将A、B两种产品的利润表示为投资的函数关系式; (2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?
(本题12分) 研究问题:“已知关于的不等式的解集为,解关于的不等式”,有如下解法: 解:由,令,则, 所以不等式的解集为. 参考上述解法,已知关于的不等式的解集为,求关于的不等式的解集.