如图,在直角梯形中,,∥,,为线段的中点,将沿折起,使平面⊥平面,得到几何体.(1)若,分别为线段,的中点,求证:∥平面;(2)求证:⊥平面;(3)的值.
某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如下图所示.(1)左图是年龄的频数分布表,求正整数a,b的值;(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.
已知命题:方程表示焦点在轴上的椭圆;命题:方程表示双曲线,且离心率,若命题为假命题,为真命题,求实数的取值范围。
已知抛物线:,(1)直线与抛物线有且仅有一个公共点,求实数的值;(2)定点,P为抛物线上任意一点,求线段长的最小值
已知双曲线的中心在坐标原点,焦点在轴上,实轴长是虚轴长的2倍,且过点, 求双曲线的标准方程及离心率.
已知抛物线的方程为,点在抛物线上.(1)求抛物线的方程;(2)过点作直线交抛物线于不同于的两点,若直线分别交直线于两点,求最小时直线的方程.