设 a ⇀ 是已知的平面向量且 a ⇀ ≠ 0 ⇀ ,关于向量 a ⇀ 的分解,有如下四个命题: ①给定向量 b ⇀ ,总存在向量 c ⇀ ,使 a ⇀ = b ⇀ + c ⇀ ;
②给定向量 b ⇀ 和 c ⇀ ,总存在实数 λ 和 μ ,使 a ⇀ = λ b ⇀ + μ c ⇀ ; ③给定单位向量 b ⇀ 和正数 μ ,总存在单位向量 c ⇀ 和实数 λ ,使 a ⇀ = λ b ⇀ + μ c ⇀ ; ④给定正数 λ 和 μ ,总存在单位向量 b ⇀ 和单位向量 c ⇀ ,使 a ⇀ = λ b ⇀ + μ c ⇀ ; 上述命题中的向量 b ⇀ , c ⇀ 和 a ⇀ 在同一平面内且两两不共线,则真命题的个数是()
点是直线上动点,是圆:的两条切线,是切点,若四边形的最小面积是,则的值为()
已知偶函数在区间单调递减,则满足的取值范围是()
已知直线,平面 ,下列命题中正确的是()
已知直线过点,且在轴截距是在轴截距的倍,则直线的方程为()
圆与圆的位置关系为 ()