某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.
(本小题满分12分)已知向量,,函数 .(Ⅰ)求的最小正周期;(Ⅱ)若,求的最大值和最小值.
设函数,其中(1)当时,讨论函数f(x)的单调性;(2)若函数仅在处有极值,求的取值范围;(3)若对于任意的,不等式在[-1,1]上恒成立,求b的取值范围.
已知各项均为正数的数列前项和为,首项为,且成等差数列.(1)求数列的通项公式;(2)若,设,求数列的前项和.
已知函数为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为 (1)求的值;(2)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
已知对任意实数恒成立;Q:函数有两个不同的零点. 求使“P∧Q”为真命题的实数m的取值范围.