某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
从⊙O外一点P引圆的两条切线PA,PB及一条割线PCD,A,B为切点. 求证:=.
已知:如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F.求证:AE·BF·AB=CD3.
已知:如图所示,在△ABC中,D是BC的中点,F是BA延长线上的点,FD与AC交于点E.求证:AE·FB=EC·FA.
如图所示,已知D为△ABC的BC边 上一点,⊙O1经过点B,D,交AB于另一点E,⊙O2经过 点C,D,交AC于另一点F,⊙O1与⊙O2交于点G. (1)求证:∠EAG=∠EFG; (2)若⊙O2的半径为5,圆心O2到直线AC的距离为3,AC=10,AG切⊙O2于G,求线段AG的长.
如图所示,过圆 O 外一点 M 作它的一条切线,切点为 A ,过 A 点作直线 A P 垂直于直线 O M ,垂足为 P .
(1)证明: O M · O P = O A 2 ; (2) N 为线段 A P 上一点,直线 N B 垂直于直线 O N ,且交圆 O 于 B 点.过点 B 的切线交直线 O N 于 K .证明: ∠ O K M = 90 ° .