已知椭圆的中心在坐标原点,焦点在轴上,离心率为,且过双曲线的顶点.(1)求椭圆的标准方程;(2)命题:“设、是双曲线上关于它的中心对称的任意两点, 为该双曲线上的动点,若直线、均存在斜率,则它们的斜率之积为定值”.试类比上述命题,写出一个关于椭圆的类似的正确命题,并加以证明和求出此定值;(3)试推广(Ⅱ)中的命题,写出关于方程(,不同时为负数)的曲线的统一的一般性命题(不必证明).
如图所示,M、N、P分别是正方体ABCD-A1B1C1D1的棱AB、BC、DD1上的点. (Ⅰ)若,求证:无论点P在DD1上如何移动,总有BP⊥MN; (Ⅱ)棱DD1上是否存在这样的点P,使得平面APC1⊥平面A1ACC1?证明你的结论.
如图(1)示,在梯形中,,,且,如图(2)沿将四边形折起,使得平面与平面垂直,为的中点. (Ⅰ)求证: (Ⅱ)求证:; (Ⅲ)求点D到平面BCE的距离。
如图所示,圆锥的轴截面为等腰直角△SAB,Q为底面圆周上一点. (Ⅰ)若QB的中点为C,OH⊥SC,求证:OH⊥平面SBQ; (Ⅱ)如果∠AOQ=60°,QB=2,求此圆锥的体积和侧面积.
一个正三棱柱的三视图如图所示,求这个正三棱柱的体积和表面积.
已知函数 (1)求; (2)求的值; (3)求