已知圆,椭圆.(Ⅰ)若点在圆上,线段的垂直平分线经过椭圆的右焦点,求点的横坐标;(Ⅱ)现有如下真命题:“过圆上任意一点作椭圆的两条切线,则这两条切线互相垂直”;“过圆上任意一点作椭圆的两条切线,则这两条切线互相垂直”.据此,写出一般结论,并加以证明.
(1)函数的解析式. (2)求出函数的单调递增区间与对称轴方程,对称中心坐标; (3)当时,求函数的值域
(1)若,求实数的值; (2)若,求实数的值; (3)若,且存在不等于零的实数使得,试求的最小值.
(1)计算:; (2)证明:是定值
(1)求的值及集合、; (2)设全集,求的所有子集
已知f(x)=[3ln(x+2)-ln(x-2)] (Ⅰ)求x为何值时,f(x)在[3,7]上取得最大值; (Ⅱ)设F(x)=aln(x-1)-f(x),若F(x)是单调递增函数,求a的取值范围。