某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(Ⅰ)求1名顾客摸球3次停止摸奖的概率;(Ⅱ)记为1名顾客摸奖获得的奖金数额,求随机变量的分布列和数学期望.
如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,,且AC=BC. (1)求证:平面EBC; (2)求二面角的大小.
已知,且(1-2x)n=a0+a1x+a2x2+a3x3++anxn. (1)求n的值; (2)求a1+a2+a3++an的值.
已知直线的参数方程为(为参数),曲线的极坐标方程为 (1)求曲线的普通方程; (2)求直线被曲线截得的弦长.
在等比数列{an}中,an>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中项. (1)求数列{an}的通项公式; (2)若数列{bn}满足bn=an+1+log2an(n=1,2,3,…),求数列{bn}的前n项和Sn.
某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题: (1)求分数在[50,60)的频率及全班人数; (2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高.