已知各项为正数的数列满足(),且是的等差中项,则数列的通项公式是 .
98被5除所得的余数是 .
把十进制数51化为二进制数,则51= (2).
若m是一个给定的正整数,如果两个整数a、b用m除所得的余数相同,则称a与b对m校同余,记作a≡b[mod(m)],例如7≡16[mod(3)],若22014≡r[mod(7)],则r可能为 .
设a、b、m(m>0)为整数,若a和b被m除得的余数相同,则称a和b对模m同余,记为a≡b(bmodm);已知a=1+C201+C202•2+C203•22+…+C2020•219,b≡a(bmod10),则满足条件的正整数b中,最小的两位数是 .
若两整数a,b除以同一个整数m,所得余数相同,则称a,b对模m同余.即当a,b,m∈z时,若=k(k∈z,k≠0),则称a、b对模m同余,用符号a=b(modm)表示.(1)若6=b(mod2)且0<b<6,则b的所有可能取值为 ;(2)若a=10(modm)(a>10,m>1),满足条件的a由小到大依次记为a1,a2…an,…,当数列{an}前m﹣1项的和为60(m﹣1)时,则m= .