已知椭圆C的方程为左、右焦点分别为F1、F2,焦距为4,点M是椭圆C上一点,满足(Ⅰ)求椭圆C的方程;(Ⅱ)过点P(0,2)分别作直线PA,PB交椭圆C于A,B两点,设直线PA,PB的斜率分别为k1,k2,,求证:直线AB过定点,并求出直线AB的斜率k的取值范围。
(1)设,,证明; (2)设,证明.
已知椭圆()的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆的右焦点为圆心,以椭圆的长半轴长为半径的圆相切. (1)求椭圆的方程; (2)设为椭圆上一点,若过点的直线与椭圆相交于不同的两点和,满足(为坐标原点),求实数的取值范围.
如图,已知四棱锥的底面为菱形,,,. (1)求证:; (2)求二面角的余弦值.
已知数列的前项和(),数列的前项和(). (1)求数列的前项和; (2)求数列的前项和.
命题存在实数,;命题对任意恒成立.若或为真,且为假,试求的取值范围.