已知椭圆C的方程为左、右焦点分别为F1、F2,焦距为4,点M是椭圆C上一点,满足(Ⅰ)求椭圆C的方程;(Ⅱ)过点P(0,2)分别作直线PA,PB交椭圆C于A,B两点,设直线PA,PB的斜率分别为k1,k2,,求证:直线AB过定点,并求出直线AB的斜率k的取值范围。
(本小题满分13分)某树苗培育基地为了解其基地内榕树树苗的长势情况,随机抽取了100株树苗,分别测出它们的高度(单位:),并将所得数据分组,画出频率分布表如下:
(1)求上表中、的值;(2)估计该基地榕树树苗平均高度;(3)基地从上述100株榕树苗中高度在[108,112)范围内的树苗中随机选出5株进行育种研究,其中在[110,112)内的有株,求的分布列和期望.
(本小题满分12分)已知顶点的直角坐标分别是、、.(1)求的值;(2)若,证明:、、三点共线.
(本小题满分13 分)已知函数.(Ⅰ)若函数在定义域内单调递增,求实数a的取值范围;(Ⅱ)若,且关于x的方程在上恰有两个不等的实根,求实数b的取值范围;(Ⅲ)设各项为正数的数列满足,求证:.
(本小题满分14分)如图,已知椭圆C:的离心率,短轴的右端点为B, M(1,0)为线段OB的中点.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M任意作一条直线与椭圆C相交于两点P,Q试问在x轴上是否存在定点N,使得∠PNM =∠QNM ?若存在,求出点N的坐标;若不存在,说明理由.
(本小题满分14分)如图,已知AF平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,DAB,AB//CD,ADAFCD2,AB4. (Ⅰ)求证:AC平面BCE;(Ⅱ)求三棱锥ACDE的体积;(Ⅲ)线段EF上是否存在一点M,使得BMCE ?若存在,确定M点的位置;若不存在,请说明理由.