在平面直角坐标系O中,直线与抛物线=2相交于A、B两点。(1)求证:命题“如果直线过点T(3,0),那么=3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
已知命题方程表示圆;命题双曲线的离心率,若命题“”为假命题,“”为真命题,求实数的取值范围.
三棱柱中,侧棱与底面垂直,,,是的中点,是与的交点.(Ⅰ)求证:平面;(Ⅱ)求证:平面.
已知直线,.(Ⅰ)若,求实数的值;(Ⅱ)当时,求直线与之间的距离.
在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线与曲线交于点(点在第一象限).(Ⅰ)求曲线的方程;(Ⅱ)已知为曲线的左顶点,平行于的直线与曲线相交于两点.判断直线是否关于直线对称,并说明理由.
在如图所示的几何体中,四边形是等腰梯形,∥,,.在梯形中,∥,且,⊥平面.(Ⅰ)求证:; (Ⅱ)若二面角为,求的长.