已知函数在点(1,f(1))处的切线方程为y = 2.(I)求f(x)的解析式;(II)设函数若对任意的,总存唯一实数,使得,求实数a的取值范围.
设椭圆的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若,求k的值.
如图,四棱锥的底面是平行四边形,,,分别是棱的中点. (1)证明平面; (2)若二面角P-AD-B为, ①证明:平面PBC⊥平面ABCD; ②求直线EF与平面PBC所成角的正弦值.
设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.(Ⅰ)求应从这三个协会中分别抽取的运动员人数;(Ⅱ)将抽取的6名运动员进行编号,编号分别为,从这6名运动员中随机抽取2名参加双打比赛.(i)用所给编号列出所有可能的结果;(ii)设A为事件“编号为的两名运动员至少有一人被抽到”,求事件A发生的概率.
已知首项为的等比数列的前n项和为,且成等差数列.(Ⅰ)求数列的通项公式; (Ⅱ)证明.
在△ABC中,内角A,B,C所对的边分别是a,b,c.已知,a = 3,.(Ⅰ)求b的值; (Ⅱ)求的值.