(本小题满分12分)如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
(本小题满分12分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.(I)求证:A1C//平面AB1D;(II)求二面角B—AB1—D的大小;(III)求点C到平面AB1D的距离.
已知直四棱柱ABCD—A′B′C′D′的底面是菱形,,E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.(1)求证:平面AEF⊥平面AA′C′C;(2)求截面AEF与底面ABCD所成二面角的大小.
若是定义在上的增函数,且对一切满足.(1)求的值;(2)若解不等式.
(本小题满分12分)如图,平行四边形中,,将沿折起到的位置,使平面平面(I)求证:; (Ⅱ)求三棱锥的侧面积.
如图,棱柱的侧面是菱形,(Ⅰ)证明:平面平面;(Ⅱ)设是上的点,且平面,求的值.