(本小题满分12分)如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
(本小题满分12分)函数部分图象如图所示. (Ⅰ)求的最小正周期及解析式; (Ⅱ)设,求函数在区间上的最大值和最小值.
(本小题满分14分)已知函数. (1)当,时,求的单调区间; (2)设函数在点处的切线为,直线与轴相交于点.若点的纵坐标 恒小于,求实数的取值范围.
(本小题满分14分)已知椭圆(,)的离心率,并且经过 定点. (1)求椭圆的方程; (2)问是否存在直线,使直线与椭圆交于,两点,满足?若存在,求的 值;若不存在,说明理由.
【改编】(本小题满分14分)已知数列中,,且点()均在函数的 图象上. (1)求数列的通项公式; (2)设,求数列的前项和.
(本小题满分14分)四棱锥中,底面,,,. (1)求证:平面; (2)若侧棱上的点满足,求三棱锥的体积.