(本小题满分12分)已知四棱锥中平面,且,底面为直角梯形,分别是的中点.(1)求证:// 平面;(2)求截面与底面所成二面角的大小;(3)求点到平面的距离.
已知向量(1)求;(2)当时,求的值.
如图已知抛物线:过点,直线交于,两点,过点且平行于轴的直线分别与直线和轴相交于点,. (1)求的值;(2)是否存在定点,当直线过点时,△与△的面积相等?若存在,求出点的坐标;若不存在,请说明理由.
如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,,平面底面,是的中点. (1)求证://平面;(2)求证:;(3)求与平面所成角的正弦值。
已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为(1)求曲线C的方程。(2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线的方程。
已知下列三个方程:至少有一个方程有实数根.求实数的取值范围.