一个多面体的直观图和三视图如图所示,其中、分别是、的中点,是上的一动点,主视图与俯视图都为正方形。⑴求证:;⑵当时,在棱上确定一点,使得∥平面,并给出证明。⑶求二面角的平面角余弦值。
为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为, ,,,,频率分布直方图如图所示.已知生产的产品数量在之间的工人有6位. (1)求; (2)工厂规定从个人中任取5人,所选5人任意两人不同组的概率是多少?
已知函数f(x)=alnx+x2(a为实常数). (1)若,求证:函数f(x)在(1,+∞)上是增函数; (2)当时,求函数f(x)在[1,e]上的最小值及相应的x值; (3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)的直线L与椭圆C相交于A、B两点. (1).求椭圆C的方程; (2).求的取值范围.
已知不过坐标原点的直线与抛物线相交于、两点,且,于. ①求证:直线过定点; ②求点的轨迹方程.
某厂生产产品x件的总成本c(x)=(万元),已知产品单价P(万元) 与产品件数x满足:,生产1件这样的产品单价为16万元. (1)设产量为件时,总利润为(万元),求的解析式; (2)产量定为多少件时总利润(万元)最大?