(本大题满分14分)已知△的两个顶点的坐标分别是,,且所在直线的斜率之积等于.(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;(Ⅱ)当时,过点的直线交曲线于两点,设点关于轴的对称点为(不重合).求证直线与轴的交点为定点,并求出该定点的坐标.
点与定点的距离和它到直线的距离的比是,求点的轨迹方程,并说明轨迹是什么图形。
已知椭圆的短半轴长为,离心率满足,求长轴的最大值。
如果椭圆的一个焦点坐标为,求的值。
如果方程表示焦点在轴上的椭圆,求实数的取值范围。
如图,过抛物线上一定点,作两条直线分别交抛物线于,(1)求该抛物线上纵坐标为的点到其焦点的距离;(2)当与的斜率存在且倾斜角互补时,求的值,并证明直线的斜率是非零常数。