(本小题满分15分) 已知动圆过定点,且与直线相切,椭圆 的对称轴为坐标轴,一个焦点是,点在椭圆上.(Ⅰ)求动圆圆心的轨迹的方程及其椭圆的方程;(Ⅱ)若动直线与轨迹在处的切线平行,且直线与椭圆交于两点,问:是否存在着这样的直线使得的面积等于?如果存在,请求出直线的方程;如果不存在,请说明理由.
已知Ⅰ.求的单调区间;Ⅱ.当时,求在定义域上的最大值;
已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.(Ⅰ)求X的分布列; (Ⅱ)求X的数学期望E(X).
设p:实数x满足,其中,命题实数x满足(Ⅰ)若且为真,求实数的取值范围;(Ⅱ)若是的充分不必要条件,求实数的取值范围.
(本小题14分)已知函数.(1)若,求曲线在处切线的斜率;(2)求的单调区间;(3)设,若对任意,均存在,使得,求的取值范围。
(本小题满分12分) 设的极小值为,其导函数的图像开口向下且经过点,.(Ⅰ)求的解析式;(Ⅱ)方程有唯一实数解,求的取值范围.(Ⅲ)若对都有恒成立,求实数的取值范围.