求证:
((本小题满分12分)如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=.(Ⅰ)求面ASD与面BSC所成二面角的大小;(Ⅱ)设棱SA的中点为M,求异面直线DM与SB所成角的大小;(Ⅲ)求点D到平面SBC的距离.
((本小题满分12分)已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.(Ⅰ)求椭圆的方程;(Ⅱ)设直线过且与椭圆相交于A,B两点,当P是AB的中点时,求直线的方程.
(本小题满分12分)设,求直线AD与平面的夹角。
已知命题若是的充分不必要条件,求的取值范围
(本小题分)设是数列的前项和,点在直线上.(Ⅰ)求数列的通项公式; (Ⅱ)记,数列的前项和为,求使的的最小值;(Ⅲ)设正数数列满足,求数列中的最大项.