设直线与抛物线所围成的图形面积为S,它们与直线围成的面积为T, 若U=S+T达到最小值,求值.
(本题满分12分) 设数列的前项和为,对,都有成立, (Ⅰ) 求数列的通项公式; (Ⅱ)设数列,试求数列的前项和
(本题满分12分) 已知函数. (I)求函数的最小正周期; (II)若不等式在上恒成立,求实数的取值范围
(本题满分10分) 设函数, (Ⅰ)不等式的解集为,求的值; (Ⅱ)在(Ⅰ)的条件下,试求不等式的解集.
(本小题满分14分) 已知函数 (Ⅰ)若,求的单调区间及的最小值; (Ⅱ)若,求的单调区间; (Ⅲ)证明:
本小题满分12分) 在下表中,每行上的数从左到右都成等比数列,并且所有公比都等于,每列上的数从上到下都成等差数列,正数表示位于第行第列的数,其中
(Ⅰ)求的值; (Ⅱ)求的计算公式; (Ⅲ)设数列满足的前项和为, 试比较与的大小,并说明理由。