(10分)一根长为l的线,一端固定,另一端悬挂一个小球,如图.已知小球从M点放下,经过0.5秒第一次到达平衡位置O.(1)求小球第三次经过平衡位置O的时间.(2)求小球运动的周期.(3)经过7.2秒,小球是在平衡位置的右边还是左边?
已知的定义域为[].(1)求的最小值.(2)中,,,边的长为6,求角大小及的面积.
有驱虫药1618和1573各3杯,从中随机取出3杯称为一次试验(假定每杯被取到的概率相等),将1618全部取出称为试验成功.(1)求一次试验成功的概率.(2)求恰好在第3次试验成功的概率(要求将结果化为最简分数).
设函数的定义域是,其中常数.(1)若,求的过原点的切线方程.(2)当时,求最大实数,使不等式对恒成立.(3)证明当时,对任何,有.
设:的准线与轴交于点,焦点为;椭圆以为焦点,离心率.设是的一个交点.(1)当时,求椭圆的方程.(2)在(1)的条件下,直线过的右焦点,与交于两点,且等于的周长,求的方程.(3)求所有正实数,使得的边长是连续正整数.
设,用表示当时的函数值中整数值的个数.(1)求的表达式.(2)设,求.(3)设,若,求的最小值.