(本小题满分12分)某工厂修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的 造价为150元,池壁每平方米的造价为120元.设池底长方形长为米. (1)求底面积,并用含的表达式表示池壁面积; (2)怎样设计水池能使总造价最低?最低造价是多少?
的三个内角所对的边分别为,向量,,且.(1)求的大小;(2)现在给出下列三个条件:①;②;③,试从中再选择两个条件以确定,求出所确定的的面积.
已知函数图象的一部分如图所示.(1)求函数的解析式;(2)当时,求函数的最大值与最小值及相应的的值.
已知点(1)若,求的值;(2)若,其中为坐标原点,求的值.
已知函数).(1)求函数的最小正周期;(2)若,求的值.
已知数列满足.(1)求证:数列是等比数列,并求数列的通项公式;(2)设,数列的前项和为,求证:对任意,有成立.