(本小题满分12分)某工厂修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的 造价为150元,池壁每平方米的造价为120元.设池底长方形长为米. (1)求底面积,并用含的表达式表示池壁面积; (2)怎样设计水池能使总造价最低?最低造价是多少?
将一个各面上均涂有红色的正方体锯成27个同样大小的小正方体, (1)从这些小正方体中任取一个,求其中至少有两个面涂有红色的概率; (2)从中任取2个小正方体,记2个小正方体涂有红色的面数和为ξ,求ξ的分布列和数学期望.
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点且满足,M,S分别为PB,BC的中点 (1)证明:CM⊥SN; (2)求SN与平面CMN所成角的大小; (3)求三棱锥P-ABC外接球的体积V。
在△ABC中,边a,b,c分别对应角A、B、C,且 (1)求角B的值; (2)若求△ABC的面积
(本小题满分12分) 已知数列的前项和. (Ⅰ)求数列{}的通项公式; (Ⅱ)设,求数列{}的前项和.
(本小题满分10分) 某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知学生小张只选甲的概率为,只选修甲和乙的概率是,至少选修一门的概率是,用表示小张选修的课程门数和没有选修的课程门数的乘积. (Ⅰ)求学生小张选修甲的概率; (Ⅱ)记“函数为上的偶函数”为事件,求事件的概率; (Ⅲ)求的分布列和数学期望;