(本小题满分12分)已知抛物线方程为(1)若点在抛物线上,求抛物线的焦点的坐标和准线的方程;(2)在(1)的条件下,若过焦点且倾斜角为的直线交抛物线于、两点,点在抛物线的准线上,直线、、的斜率分别记为、、,求证:、、成等差数列;
已知等比数列单调递增,,, (Ⅰ)求; (Ⅱ)若,求的最小值
在中,已知. (Ⅰ)求的值; (Ⅱ)若,,求的面积.
一个袋子中装有6个红球和4个白球,假设每一个球被摸到的可能性是相等的. (Ⅰ)从袋子中摸出3个球,求摸出的球为2个红球和1个白球的概率; (Ⅱ)从袋子中摸出两个球,其中白球的个数为,求的分布列和数学期望.
已知函数,曲线在点处的切线是: (Ⅰ)求,的值; (Ⅱ)若在上单调递增,求的取值范围
如图,已知抛物线焦点为,直线经过点且与抛物线相交于,两点 (Ⅰ)若线段的中点在直线上,求直线的方程; (Ⅱ)若线段,求直线的方程